Acum, după articolul anterior despre câmpuri de forţă, înţelegem despre clasificarea interacţiunilor cam cât înţelegeau fizicienii în jurul anului 1800. Par să existe trei tipuri fundamental diferite de interacțiuni: gravitaţională, electrică şi magnetică. Multe tipuri de interacţiuni care par, la o privire superficială, să fie distincte, precum capacitatea de a se lipi, interacţiunile chimice ori energia pe care un arcaş o stochează într-un arc - sunt toate acelaşi lucru: manifestări ale interacţiunilor electrice dintre atomi.

Comentarii -

 
În imagine: câmpul magnetic al Pământului, protejând Terra de radiaţia solară

În jurul anului 1900 fizicienii aveau o concepţie mecanicistă a universului. Newton arătase că sistemul solar este o colecţie de obiecte care interacţionează prin forţe care acţionează la distanţă. Pe la finalul secolului al XIX-lea începuseră să se acumuleze dovezi cu privire la existenţa reală a atomilor. Imaginea newtoniană a lumii macroscopice se transfera la nivelul lumii microscopice. Actorii pe scenă erau acum atomii, în locul planetelor, iar forţele erau electrice, nu gravitaţionale - dar părea să fie o variaţiune pe aceeaşi temă.

Comentarii -

Care este diferenţa dintre un bec cu puterea de 100 W şi unul de 200 W? Ambele sunt alimentate la o tensiune de 110 V, deci conform ecuaţiei P = UI singura explicaţie ar fi că pentru o putere de două ori mai mare, becul de 200 W  trebuie să “absoarbă” de două ori mai mult curent.

Prin analogie, un furtun pentru incendii şi altul pentru grădină sunt deservite de pompe care dau aceeaşi presiune (tensiune), dar prin furtunul de incendiu va curge mai multă apă, simplul motiv fiind că acesta este mai gros, prin urmare lasă să treacă mai multă apă. De asemenea, un râu mare şi adânc poate curge în acelaşi sens cu un altul mai mic, dar numărul de litri debitat de primul râu va fi mult mai mare.

Comentarii -


Harta câmpului gravitaţional al Terrei (Potsdam Gravity Potato)
Sateliţii GRACE şi CHAMP au fost folosiţi pentru a crea harta câmpului gravitaţional al Terrei. După cum se poate observa, sunt diferenţe între diversele părţi al suprafeţei terestre. De unde aceste diferenţe? Cauze posibile sunt: distribuţia neuniformă a masei în oceane, continente ori în interiorul Pământului, printre altele.

Ideea acestui articol a venit de la o nemulţumire privind modul clasic în care este vizualizată, de regulă, curbura spaţiu-timpului. Şi propunem o nouă modalitate de vizualizare care, sperăm, este mai intuitivă. Ca să fie clar de la început: ambele variante, cea clasică şi cea propusă aici, sunt, în mod limpede, doar aproximări; nimeni nu ştie să vizualizeze lumea în 4 dimensiuni, spaţiu-timpul. Întrebarea este dacă varianta pe care o propunem este mai utilă în încercarea de a înţelege mişcarea obiectelor în spaţiu-timp.

Comentarii -

Circuitele electrice pot fi folosite pentru transmiterea de semnale, stocarea informației, efectuarea de calcule, dar cel mai comun scop este acela de a manipula energia, cum este cazul alimentării unui bec cu ajutorul unei baterii.

Știm că becurile sunt definite în funcţie de wați, fiind vorba despre numărul de jouli pe secundă transformați în căldură și lumină, dar care este legătura cu fluxul de sarcini măsurat de ampermetru?

Comentarii -

 

În articolul de faţă vrem să explicăm, la nivel conceptual, cum funcţionează un circuit electric. Aşadar... cum putem pune la lucru curentul electric? Singura metodă să controlăm sarcina electrică de care am vorbit până acum a fost să încărcăm electric diferite substanțe (de exemplu, prin frecarea unei blăni de o bucată de cauciuc). În imaginea de mai jos (poziția 1) puteți vedea utilizarea acestei tehnici pentru a aprinde un bec. Dar această metodă este nesatisfăcătoare. Adevărat, curentul se va deplasa prin bec, căci electronii se pot mișca prin fire de metal, iar electronii în exces de pe bucata de cauciuc se vor deplasa prin fire grație atracției blănii încărcate pozitiv și respingerii de alți electroni.  Problema este că după o fracțiune de secundă blana și cauciucul vor rămâne fără sarcini, deci nu va mai fi niciun curent electric, iar becul se va stinge.

Comentarii -

Dacă mişcarea particulelor încărcate electric reprezintă fenomenul fundamental, cum putem defini o măsură numerică folositoare pentru ea? Putem spune că debitul unui râu este caracterizat de viteza de curgere a apei, dar viteza nu este caracteristică problemelor electrice, deoarece trebuie să cunoaştem sarcina pe care o au particulele care se deplasează şi, în orice caz, nu există niciun aparat capabil să arate viteza de deplasare a particulelor încărcate electric.

Comentarii -

 

Unul dintre cele mai contraintuitive aspecte ale universului nostru, şi din acest motiv larg dezbătute şi combătute de către pasionaţii de ştiinţă, este următorul: de ce nu putem călători cu viteze superioare vitezei luminii? Viteze superluminice ar putea permite călătorii în alte galaxii într-un timp rezonabil, de exemplu. Răspunsul cel mai adesea oferit de fizicieni în materiale de popularizare este: pentru că orice corp care se apropie de viteza luminii are nevoie de energie din ce în ce mai mare, iar, la limită, are nevoie de energie infinită pentru a atinge viteza luminii. Pus în context relativist, specialiştii în teoria relativităţii au însă opinii diferite.

Comentarii -


Aceasta este o vizualizare a discului de acreţie şi a jeturilor de materie din proximitatea unei găuri negre. Vizualizarea este una bazată pe predicţiile teoriei relativităţii generale.

Acum mai bine o sută de ani (1915) Albert Einstein a propus teoria generală a relativităţii, care propune o abordare radical diferită a gravitaţiei. Una dintre predicţiile cele mai extreme ale relativităţii generale este existenţa găurilor negre. Iată în continuare câteva videoclipuri, realizate pe baza teoriei lui Einstein, care arată ce ai vedea dacă ai cădea într-o gaură neagră. Găurile negre sunt de mai multe feluri, caracterizate de masă, sarcină electrică şi spin; vă prezentăm ce aţi vedea pe când v-aţi prăbuşi în două tipuri de găuri negre, gaura neagră Schwarzschild şi gaura neagră Reissner-Nordström.

Comentarii -

 
Interacţiuni ale neutrino detectate la Observatorul de Neutrino IceCube

Neutrino sunt particule produse în urma dezintegrării radioactive şi nu au sarcină electrică. Sunt particule fascinante, care-şi pot schimba identitatea (link). Aceştia sunt pretutindeni în univers şi sunt generaţi în abundență de Soare (în urma proceselor de fuziune nucleară). Pe de altă parte neutrino sunt particule foarte mici, atât de mici încât este nevoie de 10 trilioane care să traverseze Terra pentru ca unul să interacţioneze cu Pământul. Ce înseamnă această interacţiune? Înseamnă că un neutrino loveşte o particulă elementară din interiorul atomului. Pentru neutrino un atom este o entitate enormă, dominată de spaţiu gol; de aceea interacţiunea cu un corp atât de mare, precum Pământul este atât de rară. Şi atunci cum îi detectăm şi studiem în laboratoare?

Comentarii -


Materia curbează spaţiu-timpul, iar spaţiu-timpul curbat dictează mişcarea materiei în univers. credit: LIGO/T. Pyle

Spaţiu-timpul, aşa cum îi spune şi numele, pune spaţiul şi timpul împreună, dar nu doar într-o formă convenţională, matematică, ci ca structură fundamentală a universului. Conceptul a fost creat în contextul cristalizării teoriei generale a relativităţii de către Albert Einstein, dar cel care a propus conceptul de spaţiu-timp a fost unul dintre profesorii de matematică a lui Einstein, Hermann Minkowski. Einstein a avut nevoie de câţiva ani pentru a accepta ideea, pe care o credea iniţial inutilă. Ulterior conceptul de spaţiu-timp a devenit fundamental în înţelegerea noii teorii a gravitaţiei conţinută în teoria generală a relativităţii.

Comentarii -


Prima imagine a unei găuri negre. Imaginea nu este o fotografie, ci a fost creată cu ajutorul a multiple telescoape în cadrul proiectului EHT

Într-adevăr, fotonii, adică particulele purtătoare ale undelor electromagnetice, se consideră că nu au masă. Un foton se deplasează cu viteza luminii prin spaţiu-timp. Viteza luminii în vid este de 299.792,458 km pe secundă. Fotonii nu experimentează trecerea timpului. Asta înseamnă că nu contează distanţa pe care o parcurge un foton, din punctul de vedere al unui observator extern; pentru foton toată această distanţă este doar un punct, iar toată călătoria care pentru un observator extern poate dura miliarde de ani, din perspectiva fotonului este instantanee. Desigur, foarte ciudat lucru, iar vinovatul principal pentru această complicaţie este nimeni altul de Albert Einstein. Lumea era mai simplă înainte să apară el :).

Comentarii -


Câmp cuantic (reprezentare computerizată)

Pentru a putea cântări spaţiul gol, trebuie să vedem despre ce vorbim, întâi de toate. Dacă ne străduim să eliminăm dintr-o zonă din spaţiu toate particulele şi radiaţiile posibile, atunci rămânem cu ceea ce numim vid. Vidul mai este definit şi "starea de energie minimă". Spaţiul intergalactic este o bună aproximare a vidului, dat fiind că distanţele dintre corpurile cereşti sunt enorme în univers, iar în spaţiul dintre galaxii nu există aproape nimic. Ori nu e chiar aşa?

Comentarii -

Generarea undelor gravitaţionale ca urmare a orbitării reciproce a două găuri negre. Reprezentare grafică

Undele gravitaţionale au fost prezise de Einstein în urmă cu un secol, dar de unde vin acestea? Ce tipuri distincte de unde gravitaţionale ar putea exista în cosmos? De ce este aşa dificil să detectăm unde gravitaţionale? Cum funcţionează detectoarele gravitaţionale? Ce obiecte din spaţiul cosmic pot declanşa unde gravitaţionale?

Comentarii -

Nu avem nevoie de dimensiuni suplimentare sau universuri paralele pentru a avea o realitate alternativă, suprapusă propriei noastre realități. Materia invizibilă este peste tot. De exemplu, luați neutrinii generați de Soare. Suntem în mod constant bombardați cu neutrini, dar trec direct prin noi. Aceștia împart același spațiu cu atomii noștri, dar nu interacționează aproape niciodată.

Comentarii -


Câmp cuantic (reprezentare computerizată)

În discursul comun atunci când se vorbeşte despre elementele fundamentale care constituie Universul se menţionează adesea atomii. Dar atomii nu sunt particule fundamentale, cum s-a crezut pentru o vreme, ci, în fapt, sisteme complexe, alcătuite din particule fundamentale. Dar cercetarea fundamentală din ultimi zeci de ani a schimbat paradigma. Este Universul creat din particule elementare? Iată în continuare o explicaţie succintă a teoriei câmpurilor cuantice. Video inclus.

Comentarii -

Electron
Vibraţie a unui electron

Nu e neobișnuit să primesc mesaje de la pasionaţi de fizică ce contestă mecanica cuantică și teoria relativității speciale. Admit că ideile prezentate de aceste teorii sunt stranii. Pentru unii sunt pur și simplu prea contraintuitive pentru a fi acceptate. Dar am o veste proastă pentru aceştia: fizicienii nu mai gândesc Universul în acești termeni simpli. Experimentele recente au arătat că tărâmul subatomic este mult mai uimitor decât cel prezentat de conceptele din cele două teorii. A trecut aproape un secol, la urma urmelor, de la fundamentarea acestora...

Comentarii -

Simplificând un pic, dacă atomul ar fi de dimensiunea unui teren de fotbal, nucleul atomic ar fi de dimensiunea unui nasture. Restul - spaţiu gol. Dar de ce atunci când apăs pe o masă ori pe o tastatură mâna mea nu trece prin acestea? Ce o opreşte?

Comentarii -

Gravitonii sunt particulele-forţă ipotetice asociate gravitaţiei. Datorită succesului modelului standard în descrierea celorlalte trei forţe fundamentale, care se manifestă prin intermediul schimbului de bosoni, se presupune că şi în cazul gravitaţiei avem de-a face cu un boson gauge.

Comentarii -

Este unul dintre aspectele contra-intuitive ale fizicii, dat fiind că nu astfel stau lucrurile în viaţa de zi cu zi. Dacă las un fulg şi o bilă de metal să cadă spre sol, fulgul va ajunge mai târziu. Aceasta este experienţa cotidiană şi aceasta stă la baza gândirii comune. Dar când eliminăm frecarea cu aerul, când efectuăm acest experiment în vid, lucrurile se schimbă: corpurile accelerează către sol în mod similar şi ajung în acelaşi timp. Cum e posibil aşa ceva? Care este explicaţia? Iată mai jos de ce stau lucrurile astfel. Două experimente filmate, unul pe Lună şi unul într-o cameră vidată, sunt incluse în articol, pentru a ilustra demonstraţia matematică.

Comentarii -

Încerc să detectez undele gravitaţionale de 40 de ani. Când am început eram doar doar câţiva, undeva într-un laborator al universităţii. Astăzi sunt 1.000 de fizicieni, care au la dispoziţie observatoare de miliarde de dolari, care cred că suntem aproape de măsurarea undelor gravitaţionale. La 100 de ani după ce vom descoperi undele gravitaţionale, acest moment va fi unul de referinţa în istoria ştiinţei. Va fi ca descoperirea undelor electromagnetice în 1886 (află mai multe despre experimentele lui Heinrich Hertz), la un sfert de secol după ce acestea au fost prezise de către fizicianul James Clerk Maxwell.

Comentarii -

Fizica dezvăluie idei fascinante sub aspect filozofic. Faptul că parte din atomii care ne constituie au fost creaţi în stele îndepărtate este greu să nu fascineze orice pământean. Faptul că uriaşul univers în care existăm îşi are originea într-un punct de densitate infinită, de asemenea, uluieşte şi fascinează. Ciudăţeniile mecanicii cuantice, cum ar fi faptul că un foton este şi undă, şi particulă, în funcţie de modul în care-l măsurăm, de asemenea, stârnesc uimirea.

Comentarii -

Când vine vorba despre electroni, bosonii Higgs sau fotoni, ce putem spune despre aceştia? Că au spin, sarcina electrică, masă... Cam atât. Masa unei particule reprezintă o proprietate importantă, întrucât aceasta stă la baza fizicii particulelor elementare. Ce este masa, aşadar? De ce unele particule au masă şi altele nu? Şi de ce au particulele masă, la urma urmelor?

Comentarii -

Nu doar că suntem constituiţi din particule fundamentale. De asemenea, producem particule fundamentale în mod constant şi sunt bombardaţi de particule fundamentale continuu. Acum circa 14 miliarde de ani, atunci când Universul şi-a început expansiunea, materia şi antimateria ar fi trebuit să se fi anihilat. Totuşi, o cantitate mică de materie a supravieţuit.

Comentarii -

Împarte un kilometru în două şi vei obţine două jumătăţi de kilometru. Mai departe, împărţind jumătatea de kilometru în două vom obţine sferturi de kilometru, iar operaţiunea poate merge până vom obţine bucăţi foarte mici. Dar până când putem înjumătăţi o distanţă? Vom atinge vreodată o limită, o unitate de măsură fundamentală, o distanţă care nu mai poate fi împărţită în două?

Comentarii -