Teorema fundamentală a aritmeticii, cunoscută şi sub numele de teorema factorizării unice afirmă că orice număr natural {tex}n\ge 2{/tex} se descompune în factori primi în mod unic, exceptând ordinea factorilor.

 

Vom demonstra existenţa descompunerii pentru {tex}n\in N,n\ge 2{/tex}. Pentru n=2, afirmaţia este adevărata deoarece 2 este prim. Presupunem că pentru orice număr {tex}2\le l\le k,l{/tex} se descompune în factori primi şi demonstrăm pentru k+1. Dacă k+1 este prim, afirmaţia are loc. Dacă k+1 este compus, atunci {tex}k+1=a\cdot b{/tex}, unde {tex}2\le a\le k,2\le b\le k{/tex} şi, conform ipotezei de inducţie, {tex}a=p_1\cdot p_2\cdot ...\cdot p_r, b=q_1\cdot q_2\cdot ...\cdot q_s{/tex} cu {tex}p_i,q_j{/tex} prime, deci {tex}k+1=p_1\cdot p_2\cdot ...\cdot p_r\cdot q_1\cdot ...\cdot q_s{/tex}.

Trecem la demonstrarea unicităţii descompunerii lui n. Fie {tex}n=p_1\cdot p_2\cdot ...\cdot p_t{/tex} şi {tex}n=q_1\cdot q_2\cdot ...\cdot q_v{/tex} două factorizări ale lui n, cu {tex}p_i,q_j{/tex} prime. Vom arăta că {tex}t=v{/tex} şi eventual după o reindexare a factorilor, {tex}p_i=q_i{/tex}. Din {tex}p_1|q_1\cdot q_2\cdot ...\cdot q_v{/tex} avem că {tex}p_1{/tex} divide un anumit {tex}a_i{/tex}. Fără a restrânge generalitatea, considerăm că {tex}p_1|q_1{/tex} deci {tex}p_1=q_1{/tex}. Aceasta conduce la {tex}p_1\cdot p_2\cdot ...\cdot p_t=q_1\cdot q_2\cdot ...\cdot q_v{/tex} sau {tex}p_2\cdot p_3\cdot ...\cdot p_t=q_2\cdot q_3\cdot ...\cdot q_v{/tex}. Raţionând analog, dacă {tex}t\le v{/tex} ajungem la egalitatea {tex}p_t=q_t...q_v{/tex}. Cum {tex}p_t,q_t,...,q_v{/tex} sunt prime, rezultă {tex}t=v{/tex} şi {tex}p_t=q_t{/tex}.


Observaţie.
Când se cunosc descompunerile în factori primi a două numere naturale a şi b, {tex}a\ge 2,b\ge 2,d=(a,b){/tex} se poate determina ca fiind {tex}max(A\cap B){/tex}, unde {tex}A=\{x\in N|x|a\}{/tex} şi {tex}B=\{y\in N|y|b\}{/tex}, adică se aleg factorii comuni ai lui a şi b la puterea cea mai mică după care se înmulţesc.

 

Bibliografie: Solomon Marcus, Petruş Alexandrescu, Analiză matematică şi algebră, editura Nomina.

Puteți comenta folosind contul de pe site, de FB, Twitter sau Google ori ca vizitator (fără înregistrare). Pt vizitatori comentariile sunt moderate (aprobate de admin).

Loading comment... The comment will be refreshed after 00:00.

Fii primul care comentează.

Spune-ne care-i părerea ta...
caractere rămase.
Loghează-te ( Fă-ți un cont! )
ori scrie un comentariu ca „vizitator”

 


Ne poți ajuta cu o donaţie.


PayPal ()


Contact
| T&C | © 2020 Scientia.ro