Ecuaţii diferenţialeEcuaţiile diferenţiale sunt de departe mijlocul cel mai răspândit de modelare a sistemelor naturale. Se folosesc, de pildă, pe larg pentru a calcula traiectoriile sondelor spaţiale, cum ar fi cele două nave Pioneer care au explorat sistemul solar sau vehiculele-robot cu şase roţi Spirit, Opportunity şi Curiosity care au cercetat Planeta Roşie.

Comentarii -

MatematicaMatematica a fost numită limbajul Universului. Oamenii de știință și inginerii vorbesc, de multe ori, despre eleganţa matematicii în ceea ce priveşte descrierea realităţii fizice, citând exemple cum ar fi π, E=mc2 și chiar utilizarea numerelor întregi, abstracte, pentru a număra obiectele din lumea reală.

Comentarii -

InfinitUniversul nostru pare să fie condus de un set finit de legi, dar vorbim de multe ori despre lucruri care durează o eternitate. „Infinitul" este o idee ciudată. Dar este esenţială dacă doriţi să înţelegeţi concepte din filozofie şi matematică. Iată de ce.

Comentarii -

Numere primeCurtis Cooper, un profesor de matematică şi ştiinţa calculatoarelor de la Univ. of Central Missouri, a descoperit cel mai mare număr prim de până acum, acesta fiind (2^57.885.161 - 1). Are 17 milioane de cifre şi este un număr prim Mersenne.

Comentarii -

Cum aproape orice teoremă existentă are în componenţa ei predicate, pentru a demonstra aceste teoreme este necesară cunoaşterea elementelor de calculul predicatelor.

Comentarii -

Elementele de calcul propoziţional şi de logică matematică reprezintă o ramură a matematicii ce ne ajută să calculăm valoarea de adevăr a diverse propoziţii (simple sau compuse). Cu ajutorul tabelelor de adevăr se pot obţine rezultate ce o să ne ajute în viitor în cadrul enunţării anumitor propoziţii şi stabilirii unor valori de adevăr pentru expresiile matematice evaluate.

Comentarii -

În cadrul videoclipului de mai jos veţi putea asimila o metodă rapidă pentru calculul sumei unei serii de numere consecutive. Veţi vedea cât de rapid este să calculaţi, de exemplu, suma numerelor care formează seria de la 1 la 100 a numerelor întregi.

E de menţionat, aspect pe care nu-l veţi găsi în videoclip, că seria de numere nu trebuie să fie neapărat formată din numere consecutive pentru a folosi cu succes metoda prezentată. Metoda se poate aplica şi unui serii de genul: 1,3,5,7,9,11 ori 3,6,9,12 şamd.

Comentarii -

Matematica mentalăÎn cadrului noului proiect, intitulat "Academia Scientia", vă prezentăm o serie de videoclipuri în care sunt explicate diverse trucuri ce vă pot ajuta să ajungeţi un adevărat maestru al matematicii mentale. De exemplu, veţi putea înmulţi orice 2 numere formate din 2 cifre.

Comentarii -

Linear sau logaritmicUn nou model teoretic al percepţiei senzoriale şi al memoriei umane aruncă o lumină nouă asupra unor ciudăţenii ale sistemului nervos. Dacă întrebi un adult din lumea industrializată ce număr se află la jumătatea intervalului dintre 1 şi 9, va spune 5.

Comentarii -

Integrala ca arie sub curbaHenri Lebesgue (1875-1941) a fost un matematician francez, cunoscut pentru teoria integrării. Teoria lui Lebesgue privind integrarea a fost publicată în disertaţia sa "Integrală, lungime, arie", la Universitatea din Nancy în 1902.

Comentarii -

Se numeşte funcţie aritmetică orice funcţie  {tex}f:N^*\rightarrow C{/tex} . Funcţia aritmetică  {tex}\varphi :N^*\rightarrow N^*,\varphi (n)={/tex} numărul numerelor naturale k, mai mici sau egale cu n şi prime cu n, se numeşte funcţia aritmetică a lui Euler. Adică  {tex}\varphi (n) = \{ k\in N^*|1\le k\le n,(k,n)=1 \}{/tex}.

Funcţia lui Euler  {tex}\varphi :N^*\rightarrow N^*{/tex} are expresia  {tex}\varphi (n)= n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)...\left(1-\frac{1}{p_m}\right){/tex}, unde {tex}p_1,p_2,...,p_m{/tex} sunt numerele prime care apar în descompunerea lui n în factori primi {tex}n={p_1}^{k_1}{p_2}^{k_2}...{p_m}^{k_m}{/tex} .

Observaţii:

1) Funcţia lui Euler este funcţie aritmetică multiplicativă {tex}\varphi (mn)=\varphi (m)\varphi (n){/tex} dacă {tex} (m,n)=1{/tex} .

2) Dacă {tex}(Z_n,+){/tex} este grupul claselor de resturi modulo n atunci  {tex}\hat{k}\in Z_n{/tex} este generator pentru {tex}Z_n{/tex} dacă şi numai dacă {tex}(k,n)=1{/tex} , deci  {tex}\varphi (n){/tex} este numărul generatorilor grupului  {tex}(Z_n,+){/tex} .

3) Dacă {tex}(Z_n,\cdot ){/tex} este monoidul multiplicativ al claselor de resturi modulo n, o clasa {tex}\hat{k}\in Z_n{/tex}  este element inversabil dacă şi numai dacă {tex}(k,n)=1{/tex} , deci dacă {tex}(U(Z_n),\cdot){/tex} este grupul unităţilor modulului {tex}(Z_n,\cdot ){/tex} atunci {tex}\varphi (n)=|U(Z_n)|{/tex} (ordinul grupului).

 


Bibliografie: Matematică pentru grupele de performanţa, editura Dacia Educaţional.

Comentarii -

Analiza regresieiAnaliza regresiei. Sună ca o parte a unei psihologii Freudiene. În realitate, regresia este o unealtă statistică aparent omniprezentă, care apare în numeroase lucrări ştiinţifice, iar analiza regresiei este o metodă de măsurare a legăturii dintre două sau mai multe fenomene.

Comentarii -

Monte CarloDacă veţi discuta cu suficienţi oameni de ştiinţă, veţi auzi cuvintele „Monte Carlo” deseori. „Am rulat Monte Carlo-urile” va spune un cercetător. Ce înseamnă acest lucru? E vorba de tehnici matematice care permit cercetătorilor să facă estimări într-o lume probabilistică.

Comentarii -

Castigator la loterieUnii jucători la loterie nu se roagă pentru noroc, ci şi-l fac singuri. Recent, în Statele Unite presa a publicat câteva articole pe tema unor aşa-numiţi "hackeri ai loteriei", care s-au îmbogăţit profitând de vulnerabilităţile sistemului. Detalii, în continuare...

Comentarii -

Primitivele binome sunt primitive de forma {tex}\int x^m(ax^n+b)^p\,dx{/tex},

unde {tex}a,b\in\mathbb{R}; m,n,p\in\mathbb{Q}{/tex} şi care îndeplinesc una din condiţiile lui Cebâşev:

Comentarii -

SupermatematicaSupermatematica s-a născut din efortul milenar şi disperat al omului de-a modela lumea aşa cum este ea: complexă şi neliniară, nu liniară şi simplistă. Supermatematica este împlinirea visul matematicienilor de-a avea o infinitate de matematici şi de-a opera cât mai simplu cu ele.

Comentarii -

Multe din problemele de comutativitate în grupuri, altfel delicate, se rezolvă mai uşor dacă ţinem seama de structura algebrică de subgrup a centrului unui grup.

 

Manevrele posibile ale unui cub Rubik formează un grup
Manevrele posibile ale unui cub Rubik formează un grup
Credit imagine: Wikimedia Commons

Definiţie: Fie {tex}(G,\cdot ){/tex} un grup şi {tex}X\subset G{/tex} o submulţime a sa. Mulţimea {tex}Z(X)=\{g\in G|gx=xg,\forall x\in X\}{/tex} se numeşte centralizatorul mulţimii X.

Definiţie: Mulţimea {tex}Z(G)=\{g\in G|gx=xg,\forall x\in G\}{/tex} se numeşte centrul grupului G.

Propoziţie: Pentru orice mulţime {tex}X\subset G,(Z(X),\cdot ){/tex} este subgrup al grupului {tex}(g,\cdot ){/tex}.

Dacă {tex}g_1,g_2\in Z(X){/tex} avem {tex}(g_1g_2)x=g_1(g_2x)=g_1(xg_2)=(g_1x)g_2=x(g_1g_2){/tex} deci {tex}g_1g_2\in Z(X){/tex}.

Din {tex}g_1x=xg_1{/tex} rezultă {tex}xg_1^{-1}=g_1^{-1}x{/tex} deci {tex}g_1^{-1}\in Z(X){/tex}.

Observaţie: Subgrupul {tex}Z(X){/tex} este format din elementele lui G care comută cu toate elementele mulţimii X.

Definiţie: Mulţimea {tex}N(X)=\{g\in G|gX=Xg\}{/tex} se numeşte normalizatorul mulţimii X.

Propoziţie: Pentru orice submulţime {tex}X\subset G{/tex}, normalizatorul {tex}(N(X),\cdot ){/tex} este subgrup al grupului {tex}(G,\cdot ){/tex}. (Demonstraţia se face analog cu cea de la centrul grupului)

Consecinţe:

1. {tex}Z(X){/tex} este subgrup al lui {tex}N(X){/tex}

2. Dacă H este subgrup al lui G, atunci H este subgrup al lui N(H).

3. Fie {tex}(G,\cdot ){/tex} un grup şi {tex}n,p\in Z{/tex}. Notăm cu {tex}(n,p)=1{/tex}. Dacă {tex}\forall x\in G{/tex} şi {tex}x^n\in Z(G){/tex} şi {tex}x^p\in Z(G){/tex}, atunci {tex}(G,\cdot ){/tex} este grup abelian.


Bibliografie: G.M. 4-5/1990.


Comentarii -

Teorema fundamentală a aritmeticii, cunoscută şi sub numele de teorema factorizării unice afirmă că orice număr natural {tex}n\ge 2{/tex} se descompune în factori primi în mod unic, exceptând ordinea factorilor.

 

Vom demonstra existenţa descompunerii pentru {tex}n\in N,n\ge 2{/tex}. Pentru n=2, afirmaţia este adevărata deoarece 2 este prim. Presupunem că pentru orice număr {tex}2\le l\le k,l{/tex} se descompune în factori primi şi demonstrăm pentru k+1. Dacă k+1 este prim, afirmaţia are loc. Dacă k+1 este compus, atunci {tex}k+1=a\cdot b{/tex}, unde {tex}2\le a\le k,2\le b\le k{/tex} şi, conform ipotezei de inducţie, {tex}a=p_1\cdot p_2\cdot ...\cdot p_r, b=q_1\cdot q_2\cdot ...\cdot q_s{/tex} cu {tex}p_i,q_j{/tex} prime, deci {tex}k+1=p_1\cdot p_2\cdot ...\cdot p_r\cdot q_1\cdot ...\cdot q_s{/tex}.

Trecem la demonstrarea unicităţii descompunerii lui n. Fie {tex}n=p_1\cdot p_2\cdot ...\cdot p_t{/tex} şi {tex}n=q_1\cdot q_2\cdot ...\cdot q_v{/tex} două factorizări ale lui n, cu {tex}p_i,q_j{/tex} prime. Vom arăta că {tex}t=v{/tex} şi eventual după o reindexare a factorilor, {tex}p_i=q_i{/tex}. Din {tex}p_1|q_1\cdot q_2\cdot ...\cdot q_v{/tex} avem că {tex}p_1{/tex} divide un anumit {tex}a_i{/tex}. Fără a restrânge generalitatea, considerăm că {tex}p_1|q_1{/tex} deci {tex}p_1=q_1{/tex}. Aceasta conduce la {tex}p_1\cdot p_2\cdot ...\cdot p_t=q_1\cdot q_2\cdot ...\cdot q_v{/tex} sau {tex}p_2\cdot p_3\cdot ...\cdot p_t=q_2\cdot q_3\cdot ...\cdot q_v{/tex}. Raţionând analog, dacă {tex}t\le v{/tex} ajungem la egalitatea {tex}p_t=q_t...q_v{/tex}. Cum {tex}p_t,q_t,...,q_v{/tex} sunt prime, rezultă {tex}t=v{/tex} şi {tex}p_t=q_t{/tex}.


Observaţie.
Când se cunosc descompunerile în factori primi a două numere naturale a şi b, {tex}a\ge 2,b\ge 2,d=(a,b){/tex} se poate determina ca fiind {tex}max(A\cap B){/tex}, unde {tex}A=\{x\in N|x|a\}{/tex} şi {tex}B=\{y\in N|y|b\}{/tex}, adică se aleg factorii comuni ai lui a şi b la puterea cea mai mică după care se înmulţesc.

 

Bibliografie: Solomon Marcus, Petruş Alexandrescu, Analiză matematică şi algebră, editura Nomina.

Comentarii -

Teorema lui Wilson afirmă că fiind dat un număr natural {tex}p\ge 2{/tex}, următoarele afirmaţii sunt echivalente:

a){tex}p{/tex} este număr prim;

b){tex}(p-1)!+1\equiv 0(mod p){/tex};


Demonstraţie.

Avem {tex}U(Z_p)=Z_p^*{/tex} (grup multiplicativ cu p-1 elemente) şi {tex}\prod_{\hat{k}\in Z_p^*}\hat{k}=\prod_{ord(\hat{k}^`)=2}\hat{k}^`{/tex}

Dar {tex}ord(\hat{k}^`)=2{/tex} dacă {tex}(\hat{k}^`)^2=\hat{1}{/tex} sau {tex}(\hat{k}^`-\hat{1})(\hat{k}^`+\hat{1})=\hat{0}{/tex} sau {tex}p|(k^`-1)(k^`+1){/tex} şi p fiind prim divide unul dintre factori, deci {tex}p|(k^`-1){/tex} sau {tex}p|(k^`+1){/tex}, adică {tex}\hat{k}^`=\hat{1}{/tex} sau {tex}\hat{k}^`=\hat{-1}{/tex} (singurele clase de ordin 2). Relaţia {tex}\prod_{\hat{k}\in Z_p^*}\hat{k}=\prod_{ord(\hat{k}^`)=2}\hat{k}^`{/tex} devine {tex}\hat{1}\cdot \hat{2}...(\hat{p-1})=\hat{1}(\hat{-1})=\hat{-1}{/tex} deci{tex}(p-1)!+1\equiv 0(mod p){/tex}.

Reciproc. Dacă p este neprim, {tex}p=ab,a>1,b>1{/tex}, atunci {tex}a{/tex} si {tex}a|(p-1)!{/tex}. Dacă am avea {tex}(p-1)!+1\equiv 0(mod p){/tex} atunci {tex}(p-1)!+1\equiv 0(mod a){/tex}. Contradicţie cu {tex}(p-1)!\equiv 0(mod a){/tex}.


Aplicaţie.
Fie p un număr prim şi k un număr natural cu condiţia {tex}1\le k\le p{/tex}. Să se arate că numărul {tex}(p-k)!(k-1)!+(-1)^{k-1}{/tex} este divizibil cu p.

Avem congruenţele modulo p: {tex}1\equiv -(p-1),2\equiv -(p-2),...,k-1\equiv -(p-k+1){/tex} care înmulţite dau {tex}(k-1)!\equiv (-1)^{k-1}(p-1)(p-2)...(p-k+1){/tex}.

Deci {tex}(p-k)!(k-1)!\equiv (-1)^{k-1}(p-1)!\equiv (-1)^k{/tex} (datorită teoremei lui Wilson).

 

Observaţie. Problema poate fi privită ca o generalizare a teoremei lui Wilson, pe care o obţinem în cazul particular p=k.


Bibliografie: Matematică pentru grupele de performanţa, editura Dacia Educaţional.


Comentarii -

În lucrarea "Note on a conjecture in prime number theory", din 1986, matematicianul român Dorin Andrica de la Universitatea Babeş-Bolyai din Cluj-Napoca, a emis următoarea ipoteză:

spirala Ulam
Spirala Ulam - spirala numerelor prime
Credit: http://www.cs.unh.edu

 

Conjectura lui Andrica: Dacă {tex}p_n{/tex} este al n-lea număr prim pozitiv, atunci {tex}\sqrt{p_{n+1}}-\sqrt{p_n}<1{/tex} pentru orice {tex}n\in N^*{/tex}.

Valabilitatea afirmaţiei a fost dovedită cu ajutorul calculatorului pentru toate numerele prime mai mici ca {tex}2^{53}{/tex} (I. Ghory, în 2000).

Conjectura lui Andrica conduce la verificarea conjecturii lui Legendre şi postulatului lui Bertrand.


Conjectura lui Legendre:
Între oricare două pătrate perfecte consecutive există cel puţin un număr prim.

Să presupunem că există pătratele perfecte {tex}a^2,(a+1)^2,a\in N^*{/tex} între care nu există niciun număr prim. Fie {tex}p_m{/tex} cel mai mare număr prim cu proprietatea {tex}p_m(a+1)^2{/tex}. Atunci {tex}\sqrt{p_m}a+1{/tex}, prin urmare {tex}\sqrt{p_{n+1}}-\sqrt{p_n}>a+1-a=1{/tex}, ceea ce contrazice conjectura lui Andrica.


Postulatul lui Bertrand:
Pentru orice număr natural {tex}n\ge 2{/tex}, în intervalul {tex}(n,2n){/tex} există cel puţin un număr prim.

Presupunem că există un număr natural {tex}n\ge 2{/tex} astfel încât în intervalul {tex}(n,2n){/tex} nu există niciun număr prim. Putem presupune {tex}n\ge 6{/tex}, deoarece pentru {tex}n\in \{2,3,4,5\}{/tex} postulatul lui Bertrand se verifică. Notând cu {tex}p_k{/tex} cel mai mare număr prim cu proprietatea {tex}p_k\le n{/tex}, datorită presupunerii făcute vom avea {tex}p_{k+1}>2n{/tex}. Atunci {tex}\sqrt{p_k}\le \sqrt{n},\sqrt{p_{k+1}}>\sqrt{2n}{/tex}, prin urmare:

{tex}\sqrt{p_{n+1}}-\sqrt{p_n}\ge \sqrt{12}-\sqrt{6}>1{/tex}, ceea ce contrazice conjectura lui Andrica.

Observaţie: În 1850, matematicianul rus P.L. Cebâşev a dat o demonstraţie acestei afirmaţii, transformând-o într-o teoremă.


Bibliografie: Colecţia G.M.

Comentarii -

Ştim că în mulţimea numerelor reale nu putem rezolva o ecuaţie de gradul II, al cărei discriminant (expresie matematică formată din coeficienţii ecuaţiei, mai exact {tex}b^2-4ac{/tex}, unde ecuaţia dată este {tex}ax^2+bx+c=0{/tex}  ) este negativ. Numerele complexe au apărut ca o necesitate a rezolvării acestor ecuaţii şi au fost introduse începând cu secolele XVII-XVIII de matematicieni celebrii ca Euler, Moivre sau Gauss. În acest articol ne propunem să aflăm cum a fost construită mulţimea numerelor complexe.

Multimea numerelor complexe formeaza o structura de corp pe plan
Mulţimea numerelor complexe formează o structură de corp comutativ pe plan şi are numeroase aplicaţii în geometria plană.
credit: mathwarehouse.com

 

Interesant este că pentru prima oară s-a vorbit de „numere imaginare” încă din anul 1545, de către matematicianul şi medicul italian Girolamo Cardano. Cum a fost, însă, posibilă, construcţia corectă a unei mulţimi noi de numere, care să aibă în componenţă numere imaginare şi nu reale?

Noi până acum am fost obişnuiţi să lucrăm pe mulţimea şi pe axa numerelor reale (deci unidimensional). Pe această mulţime lucram cu operaţiile de adunare şi de înmulţire. În matematică spunem că mulţimea numerelor reale, împreună cu cele două operaţii, formează o structură de corp, adică {tex}(\mathbb{R}, +, \cdot){/tex} este corp. Ce-ar fi dacă am lua mulţimea rezultată în urma produsului cartezian {tex}\mathbb{R} \times \mathbb{R} = \{(a,b) | a,b \in \mathbb{R}\}{/tex}?

Pe mulţimea pe care o vom nota {tex}\mathbb{C} = \mathbb{R} \times \mathbb{R}{/tex} introducem operaţiile de adunare şi de înmulţire astfel: {tex}(a, b) + (c, d) = (a+c, b+d); (a,b) \cdot (c,d) = (ac-bd, ad+bc){/tex}. Mă veţi întreba, probabil, cum de m-am gândit la aceste operaţii? Mi-am propus să determin un număr, i, care va avea proprietatea că {tex}i^2 = -1{/tex}. Întâi de toate observăm că funcţia {tex}f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times {0}, f(x) = (x,0){/tex} este bijectivă. Codomeniul acestei funcţii reprezintă, din punct de vedere geometric, chiar axa Ox, iar domeniul îl constituie planul. Cu alte cuvinte, din punct de vedere geometric, prin această funcţie transferăm orice număr din plan pe axa numerelor reale. De acum încolo voi nota orice fel de pereche (x,0) cu x.

Să luăm operaţia de înmulţire definită anterior pe mulţimea noastră şi să calculăm {tex}(0,1)^2 = (0,1) \cdot (0,1) = (0 \cdot 0  - 1 \cdot 1, 0 \cdot 1 + 1 \cdot 0) = (-1,0) = -1{/tex}. Aşadar, dacă vom nota (0,1) cu {tex}i{/tex vom găsi exact numărul pe care îl căutam !

Ca să fim siguri că mulţimea noastră este bună, trebuie să ne asigurăm că {tex}(\mathbb{R} \times \mathbb{R}, +, \cdot){/tex} formează o structură de corp comutativ, adică trebuie să verificăm că {tex}(\mathbb{R} \times \mathbb{R}, +){/tex} este grup comutativ, {tex}(\mathbb{R} \times \mathbb{R}, \cdot){/tex} este grup, să verificăm distributivitatea înmulţirii nou definite faţă de adunarea nou definită şi că toate elementele din mulţime, mai puţin (0,0) sunt inversabile (sau simetrizabile). Este un exerciţiu foarte uşor pe care l-ar putea face orice elev (de clasa a XII-a) care cunoaşte conceptul de grup şi de element inversabil.

Să ne mai jucăm puţin cu notaţiile. Elementul (x,y) se mai poate scrie {tex}(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy.{/tex} Iată aşadar forma algebrică a unui număr complex!

Concluzii: Am construit astfel o nouă mulţime, care constituie un spaţiu peste mulţimea numerelor reale, a cărei structură de corp este bidimensională (pe plan). Iată de ce numerele complexe au numeroase aplicaţii în geometria plană. În această mulţime avem un număr imaginar {tex}i^2 = -1{/tex}, o proprietate pe care nici un număr real nu o are. Mulţimea se va nota cu {tex}\mathbb{C}{/tex}, care împreună cu adunarea şi înmulţirea formează o structură de corp comutativ.


O altă metodă de construcţie a corpului numerelor complexe

 

Fie o mulţime, pe care o notăm {tex}\mathbb{C}{/tex}, alcătuită din matricele pătratice de ordinul doi, de forma
{tex}\small \left(\begin{array}{cc}a & -b \\ b & a \end{array} \right){/tex}, matrice pe care o vom nota cu {tex}M(a,b){/tex}.
Să efectuăm adunarea şi înmulţirea matricelor:


{tex}\tiny M(a,b)+M(c,d) = \left(\begin{array}{cc}a & -b \\ b & a \end{array} \right) + \left(\begin{array}{cc}c & -d \\ d & c \end{array} \right) = \left(\begin{array}{cc}a+c & -b-d \\ b+d & a+c \end{array} \right) = M(a+c,b+d){/tex}

{tex}\tiny M(a,b) \cdot M(c,d) = \left(\begin{array}{cc}a & -b \\ b & a \end{array} \right) \cdot \left(\begin{array}{cc}c & -d \\ d & c \end{array} \right) = \left(\begin{array}{cc}ac-bd & -ad-bc \\ ad+bc & ac-bd \end{array} \right) = M(ac-bd,ad+bc){/tex}.

Iarăşi, ca un mic exerciţiu, vă îndemn să demonstraţi că {tex}(\mathbb{C},+){/tex} este grup comutativ, {tex}(\mathbb{C}, \cdot){/tex} este un monoid comutativ, şi că înmulţirea este distributivă faţă de adunare. Orice matrice M(a,b), unde a şi b sunt numere reale nenule, este inversabilă, deoarece determinatul matricei M(a,b) este diferit de 0 oricare ar fi a şi b numere reale nenule, iar inversa matricei sale va fi {tex}M^{-1}(a,b) = \frac{1}{a^2+b^2}M(a,-b){/tex}.

Dacă vom efectua înmulţirea între {tex}$M(a,b)${/tex} şi inversa sa, vom obţine {tex}M(1,0){/tex}, care este elementul neutru al înmulţirii, şi pe care îl voi nota cu 1. Asta deoarece functia {tex}f: \mathbb{R} \to \mathbb{C}, f(x) = \left(\begin{array}{cc}x & 0 \\ 0 & x \end{array} \right){/tex} este bijectivă.

Ce se întâmplă oare în corpul nou format dacă efectuăm operaţia


{tex}\small M(0,1) \cdot M(0,1) = \left(\begin{array}{cc}0 & -1 \\ 1 & 0 \end{array} \right) \left(\begin{array}{cc}0 & -1 \\ 1 & 0 \end{array} \right) = \left(\begin{array}{cc}-1 & 0 \\ 0 & -1 \end{array} \right) = M(-1,0) = -1{/tex}  ?


Iată-l pe {tex}i = M(0,1), i^2 = -1{/tex}.

În concluzie, prin notaţie, matricea {tex}M(a,b) = M(a,0) + M(0,b) = M(a,0) + M(0,1)M(b,0) = a + ib{/tex} reprezintă forma algebrică a unui număr complex.

Pe această nouă construcţie am putea merge mai departe:

Fie matricea

{tex}\left(\begin{array}{cc}\cos x & -\sin x \\ \sin x & \cos x \end{array} \right){/tex}

despre care, prin inducţie, se poate demonstra că are proprietatea

{tex}\left(\begin{array}{cc}\cos x & -\sin x \\ \sin x & \cos x \end{array} \right)^n = \left(\begin{array}{cc}\cos nx & -\sin nx \\ \sin nx & \cos nx \end{array} \right){/tex}

Observaţi că aceasta este exact formula lui Moivre?

Matricea M(cos x, sin x) este exact forma trigonometrică a unui număr complex {tex}z = \cos x + i\sin x{/tex}.

Formula lui Moivre spune că {tex}z^n = \cos nx + i\sin nx{/tex}.

Pe forumul Scientia puteţi găsi un referat excelent despre numerele complexe sub formă trigonometrică.


Comentarii -

În cele ce urmează vă prezentăm formulele mediilor aritmetică, geometrică, pătratică şi armonică a n numere.


Matematica. Algebra

Formula mediei aritmetice a n numere

{tex}\dfrac{a_1+a_2+...+a_n}{n}{/tex}

Formula mediei geometrice a n numere

{tex}\displaystyle \sqrt[n]{a_1\cdot a_2\cdot a_3 \cdot ... \cdot a_n}{/tex}


Formula mediei pătratice a n numere


{tex}\sqrt {\dfrac {{a_1}^2 + {a_2}^2 + .. + {a_n}^2}{n}}{/tex}


Formula mediei armonice a n numere

{tex}\dfrac{n}{\frac{1}{a_1} + \frac {1}{a_2} + ... + \frac{1}{a_n}}{/tex}



Comentarii -

În articolul următor vă prezentăm formulele ariei, lungimii şi, după caz, volumului unor figuri geometrice uzuale: cerc, con, cilindru şi sferă.


Aria cercului de rază R:

{tex}A = \pi R^2{/tex}


Lungimea cercului de rază R:

{tex}L = 2 \pi R{/tex}


Aria laterală a conului de rază r şi înălţime h:

{tex}S=\pi r\sqrt{r^2+h^2}{/tex}


Aria bazei conului de rază r şi înălţime h:

{tex}S=\pi r^2{/tex}


Volumul conului
de rază r şi înălţime h:

{tex}V=\frac{\pi r^2\cdot h}{3}{/tex}


Aria cilindrului de rază r şi înălţime h (cele două baze + laterală):

{tex}S=2\pi r^2 + 2\pi r \cdot h{/tex}


Volumul cilindrului
de rază r şi înălţime h:

{tex}V=2\pi r^2}\cdot h{/tex}


Aria sferei de rază r:

{tex}S=4\pi r^2{/tex}


Volumul sferei
de rază r:

{tex}V=\frac{4\pi r^3}{3}{/tex}

 

Comentarii -

Pornind de la un articol anterior - Introducere în inducția matematică - vom enumera în continuare câteva aplicaţii ale inducţiei matematice, cât şi modul lor de demonstrare. Astfel, veţi putea realiza felul în care metoda trebuie aplicată, cât şi genul de probleme la care se aplică.

Principiul inducției matematice
credit: http://math.njit.edu


Suport teoretic pentru principiul inducţiei matematice

Pentru a vă revizui cunoştinţele teoretice legate de inducția matematică, vă sugerăm să citiţi: Introducere în inducția matematică.

Exercițiul 1

Un exemplu simplu ar fi problema următoare:

Demonstraţi că: {tex}P(n) : 1+2+3+...+n=  \frac{n \cdot (n+1)}{2}{/tex} pentru orice n - număr natural nenul.

Vom rezolva acestă problemă fără a apela la principiul lui Gauss.

Rezolvarea este prezentată în continuare:

Vom demonstra problema dată folosind metoda inducţiei matematice. Astfel, vom verifica cele 2 etape:

- etapa de verificare: luăm n-minim, adică {tex}n=1{/tex}.

Avem {tex}P(1) : 1= \frac{1 \cdot 2}{2}{/tex} - propoziţie adevărată. Deci etapa de verificare a fost realizată.

- etapa de demonstraţie: trebuie să demonstrăm că dacă {tex}P(n){/tex} este adevărată, atunci {tex}P(n+1){/tex} este adevărată.

Avem:

{tex}1+2+3+...+n+(n+1) = (1+2+3+...+n)+(n+1)=\frac{n \cdot (n+1)}{2} + (n+1) =\frac{n \cdot (n+1) + 2 \cdot (n+1)}{2} =\frac{(n+2) \cdot (n+1)}{2}{/tex}

Astfel avem demonstrată propoziţia {tex}P(n+1){/tex}.

Deci și etapa de demonstrație a fost finalizată.

Folosind metoda inducţiei matematice am demonstrat că:  {tex}P(n) : 1+2+3+...+n=  \frac{n \cdot (n+1)}{2}{/tex} pentru orice n - număr natural nenul.

Exercițiul 2

De asemenea, mai putem da ca și exemplu problema următoare:

Să se demonstreze că pentru orice {tex}n \geq 1{/tex}, n - număr natural, avem:

{tex}1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + ...  + \frac{1}{2n}{/tex}.

Demonstrație:

Notăm cu {tex}P(n){/tex} egalitatea de mai sus, pentru numărul n.

Vom demonstra problema folosind metoda inducției matematice. Deci, vom verifica cele două etape:

- etapa de verificare:

Alegem n-minim, adică {tex}n=1{/tex}. Astfel, egalitatea dată devine {tex}1 - \frac{1}{2} = \frac{1}{2}{/tex}. Deci {tex}P(1){/tex} este adevărată. Astfel,  etapa de verificare este demonstrată.

- etapa de demonstrație:

Demonstrăm că dacă {tex}P(k){/tex} este adevărată, atunci {tex}P(k+1){/tex} este adevărată.

{tex}P(k): 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{2k-1} - \frac{1}{2k} = \frac{1}{k+1} + \frac{1}{k+2} + ...  + \frac{1}{2k}{/tex}

{tex}P(k+1): 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{2k-1} - \frac{1}{2k} + \frac{1}{2k+1} - \frac{1}{2(k+1)}  = \frac{1}{k+2} + \frac{1}{k+3} + ...  + \frac{1}{2(k+1)}{/tex}

Scăzând membru cu membru egalităţile de mai sus (prima egalitate dintr-a doua ), obţinem egalitatea:

{tex}\frac{1}{2k+1} - \frac{1}{2(k+1)} = \frac{1}{2k+1} + \frac{1}{2k+2} - \frac{1}{k+1}{/tex}

Dar aceasta este evident adevărată.

Astfel, cum {tex}P(k){/tex} este adevărată şi propoziţia de mai sus este şi aceasta adevărată, atunci şi {tex}P(k+1){/tex} este adevărată.

Aşadar, etapa de demonstraţie a fost realizată.

Conform metodei inducţiei matematice avem:

{tex}1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + ...  + \frac{1}{2n}{/tex} pentru orice {tex}n \geq 1{/tex}, n - număr natural.

Exercițiul 3

Majoritatea problemelor care se rezolvă prin metoda inducţiei matematice nu ne indică formula generală ce trebuie demonstrată. În acele cazuri, trebuie sa verificăm ceea ce ni se dă pentru câteva valori particulare, iar apoi să observăm formula generală. O astfel de problemă este următoarea:

Să se calculeze suma: {tex}\frac{1}{1 \cdot 2} +  \frac{1}{2 \cdot 3} + ... + \frac{1}{n \cdot (n+1)}{/tex} pentru orice n - număr natural {tex}n \geq 1{/tex}.

Demonstraţie:

Notăm suma de mai sus cu  {tex}S(n){/tex}. Ca să obţinem expresia generală, vom verifica mai întâi câteva cazuri particulare, adică {tex}n=1, n=2, n=3{/tex} şi obţinem:

{tex}S(1) = \frac{1}{1 \cdot 2} = \frac{1}{2}{/tex}

{tex}S(2) = \frac{1}{2} + \frac{1}{2 \cdot 3} = \frac{1}{2} + \frac {1}{6} = \frac {4}{6} = \frac {2}{3}{/tex}

{tex}S(3) = \frac{1}{2} + \frac{1}{2 \cdot 3} +\frac{1}{3 \cdot 4} = \frac{1}{2} + \frac {1}{6} + \frac{1}{12} = \frac{6+2+1}{12} = \frac{9}{12} = \frac{3}{4}{/tex}

Observând sumele de mai sus constatăm că {tex}S(n) = \frac{n}{n+1}{/tex}.

Astfel că am ajuns la etapa în care am intuit o expresie generală, şi vom încerca să o demonstrăm prin metoda inducţiei matematice.

Lăsăm restul rezolvării problemei ca şi exerciţiu în care să aplicaţi raţionamentul inducţiei matematice.

Articol scris pe baza unor manuale de matematică de clasa a IX-a.

 


Comentarii -

Inducţia matematică reprezintă un procedeu ce poate fi folosit în cadrul rezolvării unor probleme de algebră. Prin aceasta se înţelege o metodă de raţionament care conduce de la propoziţii particulare la o oarecare propoziţie generală. Aşa cum este prezentată în majoritatea manualelor şcolare, se lasă o falsă impresie cum că aceasta ar fi folosită numai pentru demonstrarea unor formule date. Însă inducţia poate fi folosită pentru rezolvarea unor probleme cu rezultat mult mai complex, a căror soluţionare ar fi mult mai grea dacă nu am utiliza această metodă.

Principiul inducției matematice
credit: http://math.njit.edu

Principiul inducţiei matematice

Principiul pe care se bazează inducţia matematică este:

Fie {tex}P(n){/tex} o propoziţie care depinde de un număr natural {tex}n \geq m{/tex}, m fiind un număr natural fixat. Demonstraţia prin metoda inducţiei matematice a propoziţiei {tex}P(n){/tex}, constă din două etape:

1. Se verifică mai întâi că {tex}P(m){/tex} este adevărată.

2. Se presupune că {tex}P(k){/tex} este adevărată şi se demonstrează că {tex}P(k+1){/tex} este adevărată, k fiind un număr natural mai mare sau egal cu m (adică {tex}P(k) \Rightarrow P(k+1){/tex} , {tex}k \geq m{/tex} ).

Dacă ambele etape ale demonstraţiei sunt verificate, atunci propoziţia {tex}P(n){/tex} este adevărată pentru orice număr natural {tex}n \geq m{/tex} .

Intuitiv, această metodă de demonstraţie se justifică astfel:

Din {tex}P(m){/tex} adevărată şi {tex}P(k) \Rightarrow P(k+1){/tex}, pentru orice {tex}k \geq m{/tex}, rezultă că {tex}P(m+1){/tex} este adevărată (unde {tex}k=m{/tex} ); apoi, luând {tex}k=m+1{/tex} se obţine că {tex}$ P(m+2) ${/tex} este adevărată, şi aşa mai departe. Raţionând "din aproape în aproape" deducem că propoziţia {tex}P(n){/tex} este adevărată pentru orice număr natural {tex}n \geq m{/tex} .

Metoda inducţiei matematice ne arată că dacă {tex}P(1){/tex} este adevărată (pentru {tex}m=1{/tex}), şi din {tex}P(k) \Rightarrow P(k+1){/tex}, pentru {tex}k \geq 1{/tex}, unde k este număr natural, avem că {tex}P(k){/tex} este adevărat pentru orice k număr natural.

Câteva aplicaţii rezolvate puteţi găsi în cadrul articolului: Inducţia matematică - Aplicaţii.


Articol scris pe baza unor manuale de matematică de clasa a IX-a.


Comentarii -

În acest articol vă prezentăm o scurtă lecţie de algebră despre grupul lui Klein.

Curba cuartica a lui Klein
Curba cuartică a lui Klein
credit: Greg Egan

 

Fie mulţimea {tex}K = \{ e, a, b, c \}{/tex} înzestrată cu o lege de compoziţie definită prin următorul tabel:

Grup Klein

Observaţi că pe diagonala principală a tabelului avem elementul „E”, care este şi elementul neutru al legii de compoziţie, iar pe diagonala secundară avem elementul „C”, care reprezintă compunerea dintre „A” şi „B”. Aşadar oricare ar fi elementul {tex}x \in K{/tex} , el are proprietatea că {tex}x^2 = e{/tex} .

Acesta este grupul lui Klein, un grup finit, comutativ, cu patru elemente, deci ordinul: {tex}ordK = 4{/tex}. Vă rămâne vouă ca  exerciţiu să demonstraţi prin calcul această afirmaţie. Acest tip de grup a fost creat de matematicianul german Felix Klein în 1884 pentru a studia simetriile bidimensionale şi tridimensionale.

 


Sticla lui Klein, descrisă pentru prima dată în 1882 de către Felix Klein.


Un alt rezultat deosebit de interesant, pe care merită să îl demonstraţi, tot ca exerciţiu de algebră, este următorul: "Orice grup de 4 elemente este izomorf fie cu grupul lui Klein, fie cu grupul {tex}(\mathbb{Z}_4 , +){/tex}". Aşadar orice grup finit cu patru elemente îşi poate găsi o corespondenţă într-o simetrie geometrică.

Comentarii -

În nenumărate probleme de matematică sunt întâlnite conceptele de parte întreagă şi parte fracţionară a unui număr real. În articolul de mai jos definim aceste două concepte şi enumerăm principalele proprietăţi menite să vă ajute în rezolvarea problemelor de matematică cu parte întreagă şi parte fracţionară.

Partea intreaga si fractionara

 

Fie {tex} $x\in\mathbb{R}${/tex} un număr real dat.

Definiţia 1: Se numeşte parte întreagă a numărului real {tex}x{/tex} cel mai mare număr întreg {tex}k{/tex} ce nu-l depăşeşte pe {tex}x{/tex}. Alternativ putem defini partea întreagă a lui {tex}x{/tex} având în vedere următoarele aspecte: pentru numărul real{tex}x{/tex} există şi este unic {tex}k\in\mathbb{Z}{/tex} cu proprietatea {tex}k\le x {/tex}.

Notaţie: Partea întreagă a lui {tex}x{/tex} se notează cu {tex}[x]{/tex}.

Definiţia 2: Se numeşte parte fracţionară a numărului real {tex}x{/tex} diferenţa dintre {tex}x{/tex} şi partea lui întreagă.

Notaţie: Partea fracţionară a lui {tex}x{/tex} se notează cu {tex}\{x\}{/tex}. Având în vedere această notaţie, partea fracţionară se defineşte astfel: {tex}\{x\}=x-[x]{/tex}.

Proprietăţi:

1) Pentru {tex}\forall k\in\mathbb{Z},[k]=k{/tex};

2) Pentru {tex}\forall k\in\mathbb{Z},\forall x\in\mathbb{R}{/tex} are loc egalitatea {tex}[x+k]=[x]+k{/tex};

3) Pentru {tex}\forall k\in\mathbb{Z},\forall x\in\mathbb{R}{/tex} are loc relaţia {tex}\{x+k\}=\{x\}{/tex};

4) Pentru {tex}\forall k\in\mathbb{Z}{/tex} avem {tex}\{k\}=0{/tex};

5) Pentru {tex}\forall x\in\mathbb{R}{/tex} avem {tex}0\le\{x\}<1{/tex};

6) Pentru {tex}\forall x,y\in\mathbb{R}{/tex} are loc {tex}[x+y]\ge[x]+[y]{/tex};

7) Pentru orice două numere reale pozitive {tex}x,y{/tex} are loc inegalitatea {tex}[xy]\ge[x][y]{/tex};

8) Pentru {tex}\forall n\in\mathbb{N^{*}},\forall x\in\mathbb{R}{/tex} este adevărată identitatea {tex}[\frac{x}{n}]=[\frac{[x]}{n}]{/tex};

9) Pentru {tex}\forall n\in\mathbb{N^{*}}, \forall x\in\mathbb{R}{/tex} are loc identitatea lui Hermite:

{tex}[x] + [x+\frac{1}{n}] + [x+\frac{2}{n}] +...+ [x+\frac{n-1}{n}]=[nx]{/tex}

sau în scriere prescurtată:

{tex}\dsiplaystyle \sum_{k=0}^{n-1}  [x+\frac{k}{n}]=[nx]{/tex}

Comentarii -

Lecţie de algebră: inegalităţile mediilor aritmetică, geometrică, pătratică şi armonică.

Inegalităţile mediilor

{tex}\small \frac{n}{\frac{1}{a_1} + \frac {1}{a_2} + ... + \frac{1}{a_n}} \le \sqrt[n]{a_1\cdot a_2\cdot a_3 \cdot ... \cdot a_n} \le \frac{a_1+a_2+...+a_n}{n} \le \sqrt {\frac {{a_1}^2 + {a_2}^2 + .. + {a_n}^2}{n}}{/tex}

În figura de mai sus avem, în ordine, media armonică, media geometrică, media aritmetică şi media pătratică a n numere reale strict mai mari decât zero.

Dacă exemplificăm pe două numere a şi b, unde a este mai mic decât b, aceste inegalităţi arată astfel:

{tex}a \le \frac{2}{\frac{1}{a} + \frac {1}{b}} \le \sqrt{ab} \le \frac{a+b}{2} \le \sqrt {\frac {a^2 + b^2}{2}} \le b{/tex}

Egalitatea apare atunci când a=b.

Comentarii -

Într-un articol recent am făcut o introducere a funcţiilor trigonometrice. Să vedem acum reprezentarea lor grafică şi explicaţiile de rigoare.

 

Introducere

Eşti la şcoală şi vrei să ai pe internet, în limba română, un referat de matematică cu o serie de tabele cu cele mai utile formule de matematică şi fizică? Echipa Scientia.ro face posibil acest lucru. Continuăm lecţiile de trigonometrie cu prezentarea graficelor funcţiilor sinus, cosinus, tangentă, cotangentă.

Iată o animaţie care arată asocierea dintre sinus şi cosinus pe cercul trigonometric şi reprezentarea grafică. Graficul funcţiilor poartă numele de sinusoidă şi cosinusoidă.

Proprietăţile şi graficul funcţiei sinus

Sinus este o funcţie periodică, cu perioada principală {tex}2 \pi{/tex} - verificaţi voi ca {tex}\sin x = \sin(x+2\pi){/tex}, aşadar este suficient să reprezentăm graficul pe intervalul {tex}[0, 2\pi]{/tex}, deoarece el se va repeta pe restul intervalelor.

Este o funcţie impară, adică {tex}\sin (-x) = -\sin x{/tex}, ceea ce înseamnă că graficul funcţiei este simetric în raport cu originea axelor (O) – un prim indiciu despre cum ar arăta graficul.

Ştim, de asemenea, că funcţiile trigonometrice sinus şi cosinus nu pot lua decât valori între -1 şi 1, deci imaginea funcţiei {tex}\sin x{/tex} este {tex}[-1,1]{/tex} – aşadar graficul funcţiei este mărginit între dreptele de ecuaţie y = -1 şi y = 1.

Observaţie: Dacă dăm mai multe valori funcţiei (urmăriţi tabelul de valori de mai jos), vom observa că funcţia creşte pe intervalul {tex}[0, \frac{\pi}{2}]{/tex}, descreşte pe intervalul {tex}(\frac{\pi}{2}, \frac{3 \pi}{2}){/tex} şi creşte din nou pe intervalul {tex}[\frac{3\pi}{2}, 2\pi]{/tex}.

{tex}\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|} \\ Unghi (radiani) & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$\\ \\ $\sin x$ & $\frac{1}{2}\sqrt{0}$ & $\frac{1}{2}\sqrt{1}$ & $\frac{1}{2}\sqrt{2}$ & $\frac{1}{2}\sqrt{3}$ & $\frac{1}{2}\sqrt{4}$\\ \\ \end{tabular}{/tex}

Studiind acelaşi tabel de valori, găsim valoarea maximă şi cea minimă: 1 pentru {tex}x = \frac{\pi}{2} + 2k\pi{/tex} şi -1 pentru {tex}x =  \frac{3\pi}{2} + 2k\pi{/tex}. Funcţia se anulează în {tex}x = k\pi{/tex}. k este un număr întreg.

Având la dispoziţie toate aceste informaţii, putem trasa graficul, care va arăta cam aşa:

Graficul functiei sin x


Proprietăţile şi graficul funcţiei cosinus

Cosinus este o funcţie periodică, cu perioada principală {tex}2 \pi{/tex} - verificaţi voi că {tex}\cos x = \cos(x+2\pi){/tex}, aşadar şi aici este suficient să reprezentăm graficul pe intervalul {tex}[0, 2\pi]{/tex}, deoarece el se va repeta pe restul intervalelor.

Este o funcţie pară, adică {tex}\cos (-x) = \cos x{/tex}, ceea ce înseamnă că graficul funcţiei este simetric în raport cu axa ordonatelor Oy - adică îndoind foaia în două după axa Oy ar trebui ca partea din stânga a graficului să se suprapună pe partea din dreapta a graficului.

După cum am menţionat şi mai sus, imaginea funcţiei {tex}\cos x{/tex} este {tex}[-1,1]{/tex} – aşadar graficul funcţiei este mărginit între dreptele de ecuaţie y = -1 şi y = 1.

Observaţie: Dacă dăm mai multe valori funcţiei (urmăriţi tabelul de valori de mai jos), vom observa că funcţia descreşte pe intervalul {tex}[0, \pi]{/tex}, creşte pe intervalul {tex}(\pi, 2\pi]{/tex}.

{tex}\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|} \\ Unghi (radiani) & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$\\ \\ Cosinus & $\frac{1}{2}\sqrt{4}$ & $\frac{1}{2}\sqrt{3}$ & $\frac{1}{2}\sqrt{2}$ & $\frac{1}{2}\sqrt{1}$ & $\frac{1}{2}\sqrt{0}$\\ \\ \end{tabular}{/tex}

Pe acelaşi tabel de valori din referat, găsim valoarea maximă şi cea minimă: 1 pentru {tex}x = 2k\pi{/tex} şi -1 pentru {tex}x =  (2k+1)\pi{/tex}. Funcţia se anulează în {tex}x = \frac{\pi}{2}+2k\pi{/tex}, cu k număr întreg.

Graficul functiei cos x

A venit momentul acum să vedem care e diferenţa dintre graficele funcţiilor sinus şi cosinus, căci ambele sunt sinusoide: există un decalaj de {tex} \frac{\pi}{2}{/tex} între ele:

Sinus si cosinus - reprezentari grafice

credit: Wikimedia Commons

 

 

Proprietăţile şi graficul funcţiei tangentă

Dacă funcţiile sinus şi cosinus aveau ca domeniu de definiţie mulţimea numerelor reale, la funcţia tangentă domeniul nu mai este întreaga mulţime, deoarece {tex}\tan x = \frac{\sin x}{\cos x}{/tex} şi atunci {tex}\cos x{/tex} trebuie să fie diferit de 0, adică {tex}x \ \epsilon \ \mathbb{R} - \{\frac{\pi}{2}+2k\pi\}{/tex}. Dreptele de ecuaţie {tex} x = \frac{\pi}{2}+2k\pi{/tex} constituie asimptotele verticale ale graficului funcţiei noastre, deoarece, spre exemplu în {tex} x = \frac{\pi}{2}{/tex} avem:

{tex}\displaystyle \lim_{x \searrow {\frac{\pi}{2}}}\tan x \ = \ - \infty  {/tex}

{tex}\displaystyle \lim_{x \nearrow {\frac{\pi}{2}}}\tan x \ = \ + \infty {/tex}

Imaginea funcţiei este, de data asta, întreaga mulţime a numerelor reale, deci funcţia nu mai este mărginită, din moment ce există puncte în care ea tinde la infinit.

Tangenta este şi ea o funcţie periodică, de data asta cu perioada principală {tex}\pi{/tex}, deoarece {tex}$\tan x = \tan(x+\pi)${/tex} pentru orice x din domeniul de definiţie.

Din definiţia tangentei {tex}\tan x = \frac{\sin x}{\cos x}{/tex} se poate deduce că aceasta este o funcţie impară, deoarece este raportul dintre o funcţie impară şi una pară, aşadar avem {tex}\tan (-x) = -\tan x{/tex} şi, în consecinţă, graficul va fi simetric în raport cu originea axelor.

Conform valorilor din tabelul de mai jos, pe o perioadă (spre exemplu, pe intervalul {tex}(- \frac{\pi}{2}, \frac{\pi}{2}) {/tex}) funcţia tangentă este strict crescătoare. Pentru {tex}x = k\pi \Rightarrow \tan x = 0{/tex}, unde k este număr întreg, deoarece în acele puncte se anulează funcţia sinus.

{tex}\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|} \\ Unghi (radiani) & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$\\ \\ Tangenta & 0 & $\frac{1}{\sqrt{3}}$ & 1 & $\sqrt{3}$ & $\infty$\\ \end{tabular}{/tex}

Graficul functiei tg x
credit: analyzemath.com


Proprietăţile şi graficul funcţiei cotangentă

Nici cotangenta nu are ca domeniu de definiţie întreaga mulţime a numerelor reale, căci {tex}$\cot x = \frac{\cos x}{\sin x} $ {/tex}, aşadar trebuie să excludem valorile lui x pentru care funcţia sinus se anulează. În consecinţă, domeniul de definiţie va fi {tex}\mathbb{R} - \{k\pi\} {/tex}.

Tot din definiţie deducem că aceasta este o funcţie impară, deoarece este raportul dintre o funcţie impară şi una pară, aşadar avem {tex}$ \cot (-x) = -\cot x ${/tex} şi, în consecinţă, graficul va fi simetric în raport cu originea axelor.

Conform valorilor din tabelul de mai jos, pe o perioadă (spre exemplu, pe intervalul {tex}(0, \pi) {/tex}) funcţia cotangentă este strict descrescătoare. Pentru {tex}x = \frac{\pi}{2} + 2k\pi \Rightarrow \cot x = 0{/tex}, unde k este număr întreg, deoarece în acele puncte se anulează funcţia cosinus.

{tex}\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|} \\ Unghi (radiani) & 0 & $\frac{\pi}{6}$ & $\frac{\pi}{4}$ & $\frac{\pi}{3}$ & $\frac{\pi}{2}$\\ \\ Cotangenta & $\infty$ & $\sqrt{3}$ & 1 & $\frac{1}{\sqrt{3}}$ & 0\\ \end{tabular} {/tex}

Graficul functiei ctg x
credit: analyzemath.com


Comentarii -

Definiţia logaritmului

Fie {tex}a\in (0,\infty)-\{1\}{/tex} şi {tex}$b\in(0,\infty)${/tex}, două numere reale. Se numeşte logaritm al numărului real strict pozitiv {tex}$b${/tex} exponentul la care trebuie ridicat numărul {tex}$a${/tex}, denumit bază, pentru a obţine numărul {tex}$b${/tex}.

Notaţiile logaritmilor

Logaritmul numărului {tex}$b${/tex} în baza {tex}$a${/tex} se notează: {tex}$\log_a b${/tex}. Cu această notaţie şi cu definiţia de mai sus devine clar că {tex}$\displaystyle b=a^{\log_a b}${/tex}.

Funcţia logaritm şi graficul acesteia

Funcţia logaritm este, cu alte cuvinte, inversa funcţiei exponenţiale. Vom considera funcţia bijectivă {tex}$ f: \mathbb{R} \rightarrow (0, \infty) , f(x) = a^x ,  a \epsilon (0, \infty) - \{1\}${/tex}, al cărei grafic îl puteţi vedea în figura de mai jos:

Graficul functiei exponentiale cu baza mai mare decat 1

Acesta este graficul funcţiei exponenţiale. Observaţi că pentru o bază mai mare decât 1 are această figură. Observaţi că limita la minus infinit este 0, iar la plus infinit este chiar infinit.


Graficul functiei exponentiale cu baza mai mica decat 1

Acesta este graficul funcţiei exponenţiale a cărei baza este mai mică decât 1. Este vorba de o funcţie strict descrescătoare, spre deosebire de cealaltă, care era o funcţie strict crescătoare. De data aceasta, la minus infinit, funcţia tinde să fie infinită, pe când la infinit valoarea sa tinde către 0.


Prin comapratie - graficele functiilor 2 la x si 1/2 la x

 



Cum funcţia exponenţială este o funcţie bijectivă, ea este şi inversabilă, iar inversa sa este chiar funcţia logaritm: {tex}$ f^{-1}: (0, \infty)  \rightarrow \mathbb{R} , f^{-1}(x) = \log_a x${/tex}. Cum ştim că graficul funcţiei inverse este simetric în raport cu prima bisectoare a axelor (dreapta de ecuaţie y=x) faţă de funcţia f, putem construi, aşadar, graficul funcţiei logaritmice:
Exponentiala si logaritm - grafice
credit: e-formule.ro


Cazuri particulare de logaritmi

Logaritmii in baza 10 se numesc logaritmi zecimali şi se notează {tex}$\log_{10} b${/tex} sau {tex}$\lg b${/tex}, iar cei în baza e se numesc logaritmi naturali sau neperieni (de la numele matematicianului scoţian Neper, sau Napier, care i-a descoperit), şi se notează {tex}$\ln_a b${/tex}.

Proprietăţile logaritmilor

01. {tex}$\displaystyle \log_a x = \log_a y \Rightarrow x=y${/tex}, dacă {tex}$\displaystyle x, y>0${/tex} (injectivitatea funcţiei logaritm).

02. {tex}$ \displaystyle \log_a a=1${/tex}

03. {tex}$ \displaystyle \log_a 1=0${/tex}

04. {tex}$ \displaystyle \log_a x + \log_a y=\log_a (xy) ${/tex}

05. {tex}$ \displaystyle \log_a x-\log_a y=\log_a \left(\frac{x}{y}\right) ${/tex}

06. Fie {tex}$c\in \mathbb{R}$ {/tex}. Atunci {tex}$ \displaystyle \log_a x^c=c\cdot log_a x${/tex}

07. {tex}$ \displaystyle \log_a x\cdot \log_x a=1${/tex}

08. {tex}$ \displaystyle \log_a x=\frac{\log_y x}{\log_y a}${/tex}

09. {tex}$ \displaystyle a>1 , x \in (0,1) \Rightarrow \log_a x < 0 ${/tex}

10. {tex}$ \displaystyle a>1 , x>1 \Rightarrow \log_a x > 0 ${/tex}

11. {tex}$ \displaystyle a \in (0,1) , x \in (0,1) \Rightarrow \log_a x > 0 ${/tex}

12. {tex}$ \displaystyle a \in (0,1) , x>1 \Rightarrow \log_a x < 0 ${/tex}

13. Dacă {tex}$ \displaystyle a>1${/tex} funcţia {tex}$ \displaystyle f_a:\mathbb{R}^{+}-\{0\}} \rightarrow \mathbb{R}^{+}-\{0\}}, f_a (x)=\log_a x${/tex} este strict crescătoare, adică pentru {tex}$ \displaystyle x>y${/tex}, avem {tex}$ \displaystyle \log_a x>\log_a y${/tex}

14. Dacă {tex}$ \displaystyle a \in (0,1) ${/tex} funcţia {tex}$ \displaystyle f_a:\mathbb{R}^{+}-\{0\}} \rightarrow \mathbb{R}^{+}-\{0\}}, f_a (x)=\log_a x${/tex} este strict descrescătoare, adică pentru {tex}$ \displaystyle x>y${/tex}, avem {tex}$ \displaystyle \log_a x<\log_a y${/tex}

15. Fie {tex}$ \displaystyle c\in\mathbb{R}-\{0\}$ {/tex}. Atunci {tex}$ \displaystyle \log_{a^c} x=\frac{1}{c} \log_a x${/tex}

16. Fie {tex}$ \displaystyle  x\in\mathbb{R}, a>0, a\not=1${/tex}. Atunci {tex}$ \displaystyle a^x=e^{x \ln a}$ \displaystyle {/tex}.

Pentru fiecare dintre proprietăţile unde nu sunt puse condiţii pentru {tex}$ \displaystyle a, x, y ${/tex} , se subînţeleg condiţiile din definiţie.

 

Comentarii -